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I.  Summary and Introduction

Imbedded in additive Gaussian noise, an unknown acoustic signal
o(t) is recurring over and over again. The signal consists of a

specified number of amplitude modulated pulses of width T sec's. That

{11f0<t.<'r

n
is, ©(t) = I o, P[t-(1i-1)T]) where n is known and P(t) = 0 otherwise.

je %

We do not know these amplitudes ©,, but suppose I O, and the average rate

i’ i
of recurrence are known. Assume that the recurrence times for the signal
are purely random. We wish to determine these recurrence times, 1.3.,

to detect when the signal appears in the noise.

Let X(t) denote the signal plus noise process. We sample X(t) by
taking non-coverlapping discrete-time records, each being wT sec's in
duration. To be more exact, each record consists of w successive
observations on X(t) where the observations are taken T sec's apart.

The optimal method for determining whether or not 6(t) is present
in a given record is given by the likelihood-ratio test (Mood (L],
Wainstein and Zubakov [5]). If the signal-to-noise ratio is low, then

the likelihood-ratio test amounts to observing whether the sum of all

the observations in the record exceeds in absolute value a fixed

n
threshold, provided that I Oi = [Q(t)dt is non-zero. However
i=1
resulis are pgiven for the case where I 0, = O.

i

The detection problem is closely connected with the estimation of
O(t) and its autocorrelation \V (T) =/o(t+ T ) o(t)dt. Hinich (2]}
discusses this connection and using the tools of large-sample theory,
shows that the optimal estimator of \V is a linear combination of the
sample autocorrelation and the square of the sample average of the record
agaln given low signal-to-noise ratio. However the estimation of ©

is more involved.
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Although this work should be of some use in the problem of active
and passive sonar detection of submarines, the initial motivation was
from an investigation into an underwater communication system based
upon acoustic pulse position modulation, APM. To illustrate this system
suppose submarine A is sending a message to submarine B by APM. Sub A
repeats an acoustic signal ©o(t) as defined above. The intervals between
the repetitions of ©(t) contain the information which A is sending.

The message is coded so that these intervals seem to be purely random in
length. However, the average time between recurrences of the signal is
at least an order of magnitude longer than the durastion of the signal,
nT sec's.

Sub B knows n,T, and the pseudo-random code for the intervals

between recurrences. If Sub B knoWws the © it could detect the times

i
of occurrence by matched filtering (Wainstein and Zubakov [5}).
Unfortunately the medium often distorts and delays the julses, and thus
Sub B then doesn't know the shape of the transmitted signal.

To concluue, let us outline this paper. In Section II we give a
formal statement of the problem posed above. In Section 111 we present
(as a Bayes stratesy) the likelihood-ratio test for the detection of
the recurrence of the wavefcerms In Section IV we give an approximate
likelihood-ratio test for the detection of the waveform when X Oi = 0.

Numerical examjles are given for both the case where I Oi # 0 and when

it 1s zero.

I1I. Stetement of Problem

We shall develop a formal statement of the problem, First let us

discuss it informally.



We observe a process X(t) which consists of & randomly occurring
unknown signal ;.lus noite. The noise process N(t) is assumed tc be
staticnary and Gaursizn with mean zero and known covarisnce. Without

loss of jenerality we may normalize so that the noise has variance

2

"2 I . L AN -
N(L) " EN(t) = 1. Otherwise define X (t) xm/"u(z)‘

The waveform ©(t) has known length and can be represented as a

step function as is illustrated in Figure 1 for n = 2.

Ql ! .
K

T 21

>

¥

The parameter T is the pulse width and n is the number of pulses.
Thus nT is the duration of the signal. The vector of pulse amplitudes

6! = (a1,...,9n) is unknown, but sssume we know Ol + 02 (RERER AT

We assume that the time intervals between repetitions sare lsrge
compared to the length of the waveform. Let Y be the rate of repetitions
of 6(t). Then X'-IT seconds is the average time between waveforms,

and thus,  is small. i
n > 2
We assumc that |1 6il = ( I Oi) is small compared to the
i=1
variance of the noise, we can state this in terms of RO’ the signsl-to-

n @
roise ratic of X(t). By definition R, = ¥ I O?/‘J/, S, (f) df
O jep. ¥ Yo N

c

where uw(f) is the spectral density of the noise, N(t). But
?

r @ Sw(f) df = EN(t) = c:(t) = 1 by the normalization of N. Thus,

v -

RV 2
R,=d Z 0, =¥ lieli. Since [ and I @Il are small, Ry is low,
iel
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Now we will discuss the sampling procedure. For fixed integer w,
we will take a finite group of w successive discrete observations on
X(t); the successive observations being T second spart. That is for

each t, such that t. < t_< ... < t | we observe
i | 2 m

X(t, + 1), Xt % 2T), wuu, K(t, + D).

The intervals between the t,6's ( t

't (g - Yy
greater than wT and nT (the duration of the waveform). Let

are all substantially

x({3) . (X(ty, +T), vuuy Kt +¥D)) de1, wuv, m.

We thus have a sample of m wvector observations on a w-dimensional
random variable,

This sampling ccheme may be regarded as opening & sequence of
windows of width wT seconds, through which we observe the process at
m different stages of time.

There are several different possibilities which can occur when a
window is opened. There may be no part of the waveform present during
the WwT second "look" at X(t). In that case we observe only noise.
However, the window may open just as the front part of the waveform is
"visible". In that case only the head of the vector © plus noise is
observed. Similarly, we might observe only the tail of © plus noise,
or perhaps the middle of © plus noise. Incidentally let us suppose
that wT << 5"1 T since we wish to exclude the possibility of catching
two successive waveforms in the window.

Since the window has w components and @ has n components,
there are n+w-1 ways of catching part of © along with the noise.

We can represent these n+w-1 possibilities for © 1in the window by



defining

(1) (SJO)' - (8 )

o1 0 e

where 0, - 0 if k<O or k > n¢l. For example (Sn 10)' . (OnO, cee,0)
and (S-wolg)' =0 )G e 01). There is no way of knowing in advance
which case 1s occurrirg. rtach of the n+w-1 possibilities may be regarded
as equally likely, Figure 2 gives an exaniple for w=3, n=2 where the

noise has been removed,
¢ +7

o 0, > 0, 0,
t_+T
t T . 3 . i tgeT .
NI A
1 ll |11:|'.11 L 1 4 4 lLl.\
' T T 1 — t,

I s R R Eli I_L(_f
5 (1) x(?) x(3) y (&) x (5

Figure 2. Example of Sampling System with Noise Removed and n=2, w=3,

vie will catch some nmart of © ia the ith window if and only if

+ wT, Thus, the probabil-

6(t) commences at time tO: -nT « t, + T< to <t

i i
ity of this event is approximately (n*w-1) ) where )Y 4is the recurrence
rate, The probability for observing a specific one of the n+w=1 possibil-
ities is simply J .

Oince the distances between windows are greater than nT, a single
waveform cannot appear in two successive windows. Moreover, suppose that
for some Tfo, EN(t+T)N(t) = O forT >T o Then if we take the windows
further apart Lhan‘i‘o seconds, the X(i)'s are independent. The above

restraint on the covariance of the noise holds approximately for many

colored noise nrocesces which occur in applications. Of course, for white



noise,’{fo = 0.

We then can sum up this discussion with a formal statistical state-

ment of an idealized version of the problem:

(1)

we have m independent w-dimensional random vectors ’

X(z),...,X(m), each identically distributed as X where

N+ S_ ,9 with probability .4

N + S_w-t2o " " "
(2) L = g

N+ sn_zo

a ” " ”

N + Sn-lg

\ N " " 1-(n+w=1) Y

and S, is defined in (1).

J

The vector random variable N has a w-dimensional multivariate normal
distribution with mean zero and known, non-singular covariance matrix I,
We express this by X {N} = 7/(0,z) where X'{N} is the distribution function

of the random wvariable N,

n
suppose that L Oi is either zero or it is a known constant of an order
i

n
of magnitude greater than Ilol' 2 L Oi. Assuming that X and IIO ” are
small we desire to test for each record X(l) which of the two following

hypotheses are true:

(3) H s x(i) . N(i)

o
Hl: X(l) = N(l) + SJO for some J = -w+1,..., n-1,

In other words, we wish to determine which records contain part of the wave-

form along with noise,
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I1I.  Statistical Detection of Waveform forf®y = 50,  JN0)

In this section we will derive the optimal (Bayes) test of the two
hypothesis formulated in Section 1I.

Suppose we have a random variable X from a population with denaity
function f(x |¢). Suppose we wish to test Ho: ¢ - ¢° against le ¢ = ¢1
where ¢o and ¢l are completely specified. Let ho and h1 denote the
a-priori probabilities for ¢o and ¢l’ respectively, i.e,

P{, true} = h_

(4)
P{¢l true} = hy = 1-h_

Let L° denote the loss incurred in rejecting Ho wren in fact ¢ = ¢°,

i.,e, the false alarm cost. Let Ll, be the loss in accepting “o when

¢ = ¢1, i.e, the cost in missing the signal, The Bayes strategy is a
function of the observed random variable which chooses either Ho or Hl in
such a way as to minimize the expected loss, In Chapter 12, Mood [4]

shows that the Bayes strategy is to reject Ho (accept Hl: ¢ = ¢l) if

£(x|¢,) h Lo

(5) -—T—T6—7-— >k = 1 1 .

The random variable X and the parameter ¢ can be vectors, We call

A(x ) the liklihood-ratio.,

We will now deal with the densities of interest in this work. However,
to facilitate the algebra we make the one-to-one transformation,
(6) Z=7L X
where 2-1 is the inverse of I, the covariance matrix of the Gaussian noise

vector N,
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From (2) we have

N e 170 s 6 with probability for each

J

J= -wtl,...,n-1
(7) Z =
N* with probability Y1l-(n+w..)
where )ka'} = Y (o, Z-l).

If the noise N(t) is white, then EN(tl) N(t.) = O for t ¥ t,.

2)
Thus L is the identity matrix since we made oﬁ(t) =1, Thus 2 =X,

To restate the hypotheses Ho and H, in terms of Z, from (3) we have

1

H: 2 = N* with a-priori h, = 1-(n*w=1) )

(&) P
Hl: Z = N*+ L SJO for some ]

Thus Ho says that only noise is present in the window and Hl says that
some translation of 6 is present,

Let f(z| ©) be the density of Z given H,, parameterized by the

l’
waveform vector ©. Therefore from (7) we have
p -l -1 -1
(9) f(z]O) = ST L n(le SjQ, L)
J:_WOI
where
e N e e
n(zjgp,c) = 27T) ° |C| “e

is a w-dimensional normal density with mean (D and covariance matrix C.

The density of Z given Ho is simply
1
)

Notice that f(z IO) is a convex combination of multivariate normal

f(zl 0) = n(z fO,Z-

densities, but it 1s not in general multivariate normil itself, We shall
handle it by making Taylor series approximations with © in the neighbor-

hood of zero.
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By expanding in Taylor series about 6 = O we have

- ~1
(IO) n(?‘L)‘ JZpJ }" —) = l*z' ) ¢+ l '(ZZ' tnd r‘-l)
n(z| o, }‘-l) vae v
W
+ L G, (2 l i,J,k)C (1;J’k) 4 q) @
i, J,k=1 : ) 41 ik

ol e g

where the c's are constants and

z
w

t3

*. . .’ tl‘
i W

Z

K*(z, (] ) <de

for some t,; > 0 ard d > 0. Thus EO[K"'(Z,@ )]r exists and is bounded

by some number independent of (f) for each r > 0. With the notation
}“l = (Olj)

e i) ik ik
Oty Gj(zll"“k) " 2,2 ,2)=0 2y =0""z,-0"" 2,

EOGB(zli,j,k) - 0 for all i,},k
From page 39 of Anderson (1],
: 1
k4.4 .7, 2 = ol‘jok t + oiko‘j[ + o:l [o‘jk
o1l Jk L

E 7.7 = oid,
0O 1

J

Moreover all odd moments of the Zi's are zero, We then have the following

orthogonality relationships:

I‘o[‘i(/'jék-o ) =0 for all 1, j,k

£ 4G5 Joky £) = 0 for all 1,3,k £

AN

i g J ;
o4 40 j)GB(/, ] kyAL,m) =0 for all i, },k,} ,m.
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Puttiru;q)==bjg in (10) and summing, we have from (5) and (8) that
AR ] . f(zlo
] =
the likl)ihood ratio A(z 'Q) £lz]0) is,
r(z]e) 1 7 e T D =1
(12) (2 10) T Tl (3 QJQ) a3 3 (QJQ) (22 3 )(oJ )

+ L Gj(zli,J,k)O('lgllj)
i, J,k
( L
s K(z,90) o_||o|| )Je
EO[K(Z,O)]r exists and is bounded by some number independent of @
3 4L
for each r > 0. Moreover the O(llu,l ) and 0(!,0,| ) terms are
functions of & which do not involve z,
0 . . 3 1
Now define the discrete autocorrelation vector}/ = (le,...,7£g

and the time-averaqe?j by:

O

2

W/Z = 9192 + G293 s s o On_lOn
(13)
CEETRL L T SRR LS
1% n ) ngn
n
(14) 1#0 = L6 (DC value of @).
i=1

Applying (1), (13), and (14) we have

(15)

where 10 = 1,...,1), 7nd for any oymmetric w x w matrix A = (aij)
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1 n-1 w w-1

= i 3 v A(C .
(16) 5 b Btk =€ E a )Y ¢ o E a0V

w=-n+1
thes el 1o, ( z ai’i’n-l)wn,
i=]

where aij is understood to be zern when i1 or J is greater than w or
less than 1, Thus, if w < n, the coefficients of’q)w’l,..., wun
vanish and

1 w

= N} ¢ O = o o o .

S e AL = (1 aii)wl . va VY,

J i=1
Applying (15) and (16) to (12) we have the following result,
Lemma 1, Define Y(z)' = (Yl(z),...,Yn(z)) by
w=k+]l :
- i,i¢k-1
(17) Yk(z) = I (iji*k-l-o d )» k=l,...,n.
i=1
Then the liklihooud-ratio

| .tz |6 o 3 1 ; . -

(18) Mz o) = = 7 1 e L)Y, ¢ Y)Y
TGy, 5000(el) ¢ k2,00 e *)

1,4,k

It 1s understood that 2" O if 1 <0or i2wtl, and thus if w<n

Luppose we know the waveform vector ©. Then from (5) and (8) in
tection I, the Hayes test between H (only noise) and Hy (some part of
the waveform present) is:

ke ject 0 if A z| o) > k.
However suprose we know only'Ué 2 LOi but we use an alternative test

which says relect H o if
O



B o 2

(19a) A*(z|e) =1 + (z'1 )1P > k. A* is the linear

n*w Tntw-l
approximation of A, From Hinich [2], we have
-1

Vo
1 = 1 ——
EO 21}, (l E lw) n+w=1

=1 1l 2
Varg 211, = W30, iy @ IRl

Thus we can rewrite (19a) to say reject Ho if

(19b) 1 )y V20 s miwl g,y

w w w ﬂ+l°

ol -1/2

Under H , Y= (1' £~ 1) Z' 1 1is a normal random variable
(o} W w w

with mean zero and variance one, Under H,, Y is again normal with

1’
variance one but with mean

1/2 VYo

11
(20) (1, 1) v

w
Let a and c* be the probabilities for rejecting Ho when in fact
it is true (false-alarm) for the A and A\* - tests respectively. Let

B and B* be the probabilities of accepting ho when H, is true, i.e,

1

the probabilities of missing the waveform. Then the expected loss
E(L) using A is,

(21a) E(L) = oL+ BL

where Lo is the false-alarm cost and Ll is the cost of missing ©.

Similarly the expected loss E(L*) using A* is,

r » - x* *
(21b) E(L*) = a Lo +B Ll'
Since the A - test is Bayes, E(L) < E(L*). But in the Appendix we prove

Theorem 1: The A* - test (19b) between Ho and H, has expected loss

2
(22) =) <@ + (1 v L) —2— (¥ Y o(llef|®)) o)

(wtn-1)

1
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where U is the n x n matrix

(23) D = EOY(Z) eI

Fxample 1: cuppose the noise is white., Thus
= 1w and X = 7

Then from (17) we have the autocorrelations,

o 2 P
= - + + -
Y, (x) (xl NG Y (xw 1)
Yo () = XK, veees X0 X,
(21‘) .
Yn(x) - xlxn Teeet Auinel Mw
ouprose

Thus from (13) and (14)

xy;,

(25)

’ n"l’ n'2)0'°) l)

NID

1
5= I
n

1

Vo

fet w=m., Thus from (23) and (24)

(26) D = 0 .

Thus from (25) and (26)
1
I s 4
Yy o
how let L =1 and L, = 3,
0 1

as costly as a false-alam,

This means that a miss is three times
This is realistic {f there is a-priori

knowledpe of the pattern of repetitions of @, allowing us to reduce the



false-alarm rate,
Moreover, assume that 1/a = 5n, i.e. the average distance between
occurences of © is five times as long as ©. Then the probability of noise

alone in the window is %. Thus we have

k l-na EQ 4
na Ll 3

Now let n = w = 9, From (19b) we reject Hy if

n+w=1 k-1 = 1.89

(27) i” Vw 7

Wi
= ™0
>
\%

X, has density n(YIO, 1)s

Under Ho’ Y i

n
W |~
MW

(28a) a* = P {Y > 1.89|H°} = ,029

Under H,, Y has density n(y'd, 1) where

1’

W
d = _ni—jv:l_‘l}}o = .18 from (20). Thus
(28b) g* = P_ {Y < 1.89H,} = .956

From (21b)
E(L*) = 2,89
1

From (22) and since Y 'DY 2 i

(29) 2.65 < E(L) < 2.89

From (28b) we see that the probability of a miss is very high.
This is because the detectability—d is small., But this is the best we
can do given this sampling scheme. The signal-to-noise ratio is small,
If we used matched-filtering with @ as the filter function, we could
not do better,

Z. is easy to compute, If we know

. :
The test statistic o "

™M
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Wuo’ we can easily carry out the A* - test, For small signal-to-noise
ratio it is optimal. It should still be reasonably good even if the
signal-to-noise ratio is not too small, especially if we include the second
order terms, which involve the waveform autocorrelation tenms,fqli, and

the autocorrelations Yi(Z).
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IV. Detection of Waveform with]Ko = C,

If-ylo = 0, the \* - test is no good. But suppose we know the discrete
autocorrelation vector'q). Furthermore, assume the noise is white. Thus

I=1and Z = X, To test between Ho and H let us use the alternative test

1’
which says reject Ho if

(30a) A (z]e) = 1+ —;;%:i- Y(X)Y> k,

where the vector Y(X) is given by (24) and EOYY' = D, A** is the second-
order approximation of the likelihood-ratio A.

From Cochran's theorem and the central limit theorem (Lindgren (3] ),

under Ho
(31) a= (W o2 Ly )y
i N

has a normal distribution with mean zero and variance one as w—09,

Thus we can rewrite (30a) to say reject Ho if

:' -
(300) Q> (k-1) (nvw-1) (Y vy Y2
Under Hl Q is again approximately normal with variance one, for large w,

but with mean

(32) e (W YT,
since from Hinich (2],
1
B YU = ST !

Eg YY' =D+ ETG%T" o(|[e]]*)-

We thus can prove in a manner similar to that used for Theorem 1,
Theorem 2: For small © , the A** - test (30b)
has the property that

E(L) 2 E(L’*) - a*tLo 4 B**Ll
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where a** is the false-alarm probanility for the A** - test and p** is
the probability of a miss., In this= case we do not specify the error terms,
However, by analogy to Theorem 1, ‘he A** — test should be nearly optimal
for reasonable large n,

kxample 2: For w > n, from (23) and (24)

(33) D = q

Let w = 8 and n = 4 with

N~

o' == (1, -1, -1, 1)
From (13) and (14)
Yo * O andY' = % (2, -1, -2, 1).

Thus from (33)
100

!
Y =g
Let k = 1 = % as in Example 1, From (30b) and (31) we reject Ho if
¢ 2 1l.47 where,
1l = 2 7 6 2
g | = - = - N - : .
(34) G2 - 1) (X = 2 DX Ko v DX Xy g )
1 1 1 1
Under H_, Q has density n(q IO, )
(35a) w** =P {Q> 1.47]H ) = .0
Under Hl’ « has density n(qld, 1) where

d ==t (g py) M2

n+w-1

.23 from (32). Thus

il

(35h) Chi f’r{w < N 47 Hl} = ,893
Thus from Theorem 2,

S(L**) = 2,75
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To conclude, we see from (31) and again in the example with (34) that
the test statistic is simply a cross correlation between the sample discrete
autocorrelation vector Y(X) and the discrete autocorrelation vector yl. This
cross correlation is fairly easy to compute provided we know theﬂyi. Hinich
[2]) gives the optimal estimators of the \Hi, based upon Y(Z) and Z'lw.

In addition we assumed white noise for this section. The case of a
general covariance matrix I is not a difficult extension, it just complicates

the algebra.



Appendix
Proof of Theorem 1l: From (18)

. . 1' . ll
a=P (A>KHY2P (A >k x-x|<nno}

;n
™ » l ¥ l l
P {(A*>k + ano} - P (A*>k + n,,x = x*[> anO}
-1 -1/2 7. ,I 1
(A1) 2P {1 1) iﬁqu%}-qu-xgan

where,

ntw=1 -1 1
k. - (k-l‘ -).
S Y n

» *
Now a* = P_{x* > leo}

_ 1y 12 ¥ | i
pl(1t 27 1) Lz >k M

v 1
where k'! = n+w-1 4# -1 (k=1).
-1 172 g
(1 1)
w w
. , =1 -1/2 "
Since (1' £~ 1 ) L2, under H 1is nomal with mean zero and
W w 1 i o
variance one, and n is large,
. -1 -1/2 ¥ 1
(A?) Pr{(lwz 1) )l:zi_>_k} a +o(n).

Moreover by the Tchebysheff inequality, Mood (4],

2
P In =22 ) s —T— ¥y o (o || 4
r n'lo (wen=1)

since Eo (A = A*) = 0 and from (18),

B, O - x%) = ———— [yr 0y + o(]| 0f[®) 1
(wen-1)
Thus from (Al) and (A2),
(A3)  a>a*-__n [y DY+ 0 (of®) 1+0(3)
(wen-1)°

Similarly for p = P {A < kIHl}



2
6 1
(AL) Bp2p* - ———(Y' Dy +o (o)) o ()
(wtn-1)
Since from (21b), E(L*) = u*Lb + B‘Ll,

we have the desired result,
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